
www.manaraa.com

On-orbit frequency identification of spacecraft
based on attitude maneuver data
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Abstract
Purpose – The purpose of this paper is to present an on-orbit frequency identification method for spacecraft directly using attitude maneuver data. Natural
frequency of flexible solar arrays plays an important role in attitude control design of spacecraft with solar arrays, and its precision will directly affect the
accuracy of attitude maneuver. However, when the flexibility of the solar arrays is large, because of air damping, gravity effect etc., the frequency obtained
by ground test shows great error compared with the on-orbit real value. One solution to this problem is to conduct on-orbit identification during which
proper identification methods are used to obtain the parameters of interest based on the real on-orbit data of spacecraft.
Design/methodology/approach – The observer/Kalman filter identification and eigensystem realization algorithm are used as identification
methods, and the attitude maneuver controller is designed using the rigid-body dynamics method.
Findings – Two conclusions are drawn in this paper according to results of numerical simulations. The first one is that the attitude controller based
on the rigid-body dynamics method is effective in attitude maneuver of the spacecraft. The second one is that the on-orbit parameter identification
can be directly achieved by using attitude maneuver data of spacecraft without adding additional missions.
Practical implications – Based on the methods proposed in this paper, it is convenient to obtain the natural frequencies of the spacecraft using the
data of the attitude maneuver, which may greatly reduce the cost of on-orbit identification test.
Originality/value – The way of obtaining natural frequencies based on attitude maneuver data of spacecraft provides high originality and value for
practical application.
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Introduction

With the development of the space industry, large and flexible
solar arrays have been widely used in space structures, leading
to the low and dense frequencies of the system. For such
structures, it is difficult to assemble the system on the ground
(1g gravity environment), and it is even more difficult to do
ground test because of air damping, gravity effect, etc.
Moreover, in some cases, experimental apparatus could not
meet the experimental requirement in ground test. On the
other hand, flexible parameters of spacecraft, especially the
natural frequencies of flexible solar arrays, may have a great
effect on the attitude control of spacecraft, because these
parameters will be used in control design. When the flexibility
of the solar arrays is relatively small, the natural frequencies
obtained using the ground test could guarantee the accuracy of
the attitude control. However, when the flexibility of the solar
arrays is large, the frequencies obtained using the ground test
are inaccurate, and the precision of the attitude control would
drop sharply if these frequencies are applied to the attitude
control design. One way to solve this problem is to perform
on-orbit identification work during which proper identification
methods are used to obtain the parameters of interest based on

the real on-orbit data of spacecraft. As the flexible parameters
obtained by the on-orbit identification are based on the real
vibration of spacecraft in outer space, high attitude control
accuracy may be guaranteed using those parameters in control
design.
Generally, the parameter identification method includes two

aspects: the time domain method and the frequency domain
method. The frequency domain method, which was developed
earlier, has anti-noise ability but cannot deal with structures
with dense frequencies quite well. Modern space structures
with large and flexible appendages tend to have dense
frequencies. Therefore, the frequency domain method is not
suitable for parameter identification of such structures.
However, the time domain method can overcome the above
disadvantage. For the time domain method, besides the
observer/Kalman filter identification (OKID) and eigensystem
realization algorithm (ERA) mentioned in this paper, there are
some other methods, such as random decrement technique,
natural excitation technique, stochastic subspace identification
(SSI), etc. These methods have different characteristics. For
example, random decrement technique is used to extract
free-decay response from random response of system, and SSI
is used for parameter identification of system under ambient
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excitation. In addition, the time domain method can acquire
the state-space equation of system in time domain, which
provides great convenience for control design.
Up to now, few on-orbit identification tests have been done.

For example, the on-orbit model identification experiments
were done for the Hubble space telescope using the input and
output data of the system (Tobin and Greg, 1995). Two
on-orbit forcing function tests were conducted shortly after the
spacecraft serving mission. The first test was conducted to
determine the modal frequencies of interest. The second test
was conducted to determine the gain and damping for the
spacecraft significant modes. In the International Space Station
(ISS), the shuttle booster ignition pulse was used as an
excitation to realize on-orbit modal parameter identification
test for five times (Mohamed et al., 2003, 2002). The dynamic
responses of the Shuttle-ISS mated structure were measured
using the Shuttle payload bay video camera photogrammetric
system, the internal wireless instrumentation system (IWIS)
accelerometers, and the IWIS strain gages. The measured data
were processed and analyzed to identify the structural modal
parameters, including frequencies, damping and mode shapes.
On the Engineering Test Satellite VI, the parameter
identification work was finished by NASDA (Isao and Takashi,
1997; Shuichi and Isao, 1999; Yamaguchi et al., 1995;
Ishikawa et al., 1995; Kasai et al., 1997). The satellite was
excited by its reaction control system, and its modal parameters
were identified based on attitude telemetry data form the
attitude control system and six paddle accelerometers. On the
Mir Space Station, the external excitations used in on-orbit
modal experiment included Shuttle and Mir thruster firings;
Shuttle-Mir and progress-Mir dockings crew exercise and push
offs; and ambient noise during night-to-day and day-to-night
orbital transitions (Kim and Bokhour, 1997; Kim and Kaouk,
1998, 1999; NASA, 1996). Those were designed to provide a
wide range of load paths, input force levels and frequency
contents. The examples above are typical on-orbit
identification tests conducted over the past decades. In these
tests, space missions are specially designed and performed for
on-orbit identification and are extremely costly. In addition, it
should be mentioned herein that to obtain the flexible
parameters of spacecrafts, the above on-orbit tests are all based
on the ERA. This algorithm is a time-domain identification
technology that determines the modal parameters only with
input-output data of structures. The on-orbit identification
needs the excitation data and vibration response of spacecraft.
Fortunately, attitude maneuver of spacecraft exactly provides
an excitation and the response could be obtained through
sensors on the spacecraft. Consequently, we are inspired to
consider whether the attitude maneuver data could be directly
used for parameter identification. If the data could be used, it
would be of great convenience to complete the identification
work with the attitude maneuver data without adding
additional spacemissions.
This paper presents a parameter identification method based

on the data of attitude maneuver process using a typical
spacecraft as research object. The ERAmethod is adopted here
to identify natural frequencies, and the attitude maneuver
controller is designed using the rigid-body dynamics method.
For the ERA, the existing studies on this method are mostly
based on the state information of the system (displacement and

velocity) and few are based on the acceleration signal. It is well
known that acceleration sensors are widely used in practical
engineering, as the acceleration signal of structural response is
more realistic and reliable than displacement and velocity
signals and is easier to be obtained as well. Therefore, the
computational form of ERA method based on acceleration
signal is presented in this paper. The effectiveness of the
proposed methods is verified by the numerical simulations at
the end of this paper. This paper is organized as follows:
Section 2 presents the dynamic equation of the spacecraft; the
attitude control design for attitude maneuver process is
described in Section 3; Section 4 introduces the OKID and the
ERA based on the acceleration signal; the numerical simulation
results are outlined in Section 5; and Section 6 briefs the
conclusions of the research.

Dynamic equation

The spacecraft system adopted in this paper is shown in
Figure 1. The system is composed of one rigid body R and two
flexible solar arrays E1 and E2. The two solar arrays are fixed to
the rigid body. One side of each solar array is fixed to the rigid
body with no displacement and no rotation, and other sides are
free. Two acceleration sensors at the end of each solar array are
used to measure vibration signals for parameter identification.
The Ob � xbybzb system is the body-fixed base of the system
with the point Ob being located on the mass center of the rigid
body.
The Lagrange method is adopted to establish the dynamic

equation for the spacecraft shown in Figure 1. The detailed
process of derivation can be found in studies by Shi (2004) and
Jae and Brij (2006). The dynamic equation of the system is
(Shi, 2004; Jae and Brij, 2006):

J _v tð Þ1 ev Jx tð Þ1N1€g1 tð Þ1N2€g2 tð Þ ¼ u tð Þ
€g1 tð Þ1 2n1X1 _h 1 tð Þ1X2

1g1 tð Þ1NT
1 _v tð Þ ¼ 0

€g2 tð Þ1 2n2X2 _h 2 tð Þ1X2
2g2 tð Þ1NT

2 _v tð Þ ¼ 0

8>><>>: (1)

where x tð Þ 2 R3�1 is the attitude angular velocity vector of the
system; g1 tð Þ 2 Rr1�1 and g2 tð Þ 2 Rr2�1 are the modal
coordinate vectors of the two solar arrays, respectively; r1 and r2
are the number of truncated modal for the two solar arrays;
J 2 R3�3 is the matrix of moment of inertia of the system;
N1 2 R3�r1 and N2 2 R3�r2 are the modal angular momentum
coefficient matrices of the two solar arrays, respectively, their
detailed expressions can be found in Shi (2004) and Jae and
Brij (2006); ex 2 R3�3 is a skew-symmetric matrix associated
with x tð Þ, its definition is given by equation (2); X1 2 Rr1�r1

Figure 1 Sketch of the spacecraft structure
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and X2 2 Rr2�r2 are both diagonal matrices with the diagonal
elements being the natural frequencies of the two solar arrays,
respectively; n1 2 Rr1�r1 and n2 2 Rr2�r2 are both diagonal
matrices with the diagonal elements being the damping ratio of
the two solar arrays, respectively; and u tð Þ 2 R3�1 is the control
torque vector acting on the three axes of the rigid body.
Throughout the full text, the symbol “�” denotes a skew
symmetricmatrix, such as:

ex ¼ �exT ¼
0 �v3 v2

v3 0 �v1

�v2 v1 0

24 35; x ¼
v1

v2

v3

24 35 (2)

Equation (1) can be also written as:

J N1 N2

NT
1 I1 0

NT
2 0 I2

2664
3775

€h tð Þ
€g1 tð Þ
€g2 tð Þ

2664
37751

~_u J 0 0

0 2n1X1 0

0 0 2n2X2

26664
37775

_h tð Þ
_g1 tð Þ
_g2 tð Þ

2664
37751

0 0 0

0 X2 0

0 0 X2

2664
3775

h tð Þ
g1 tð Þ
g2 tð Þ

2664
37755

I

0

0

2664
3775u tð Þ (3)

where h tð Þ ¼ u 1 u 2 u 3
� �T 2 R3�1 is the attitude angle

vector of the system; _h tð Þ ¼ x tð Þ and €h tð Þ ¼ _x tð Þ; and
I1 2 Rr1�r1 , I2 2 Rr2�r2 and I 2 R3�3 are unit matrices.
Defining a generalized coordinate vector as v tð Þ ¼

hT tð Þ; gT1 tð Þ; gT2 tð Þ
� �T 2 Rn�1, n ¼ 31 r1 1 r2, equation (3)
becomes:

M€v tð Þ1Dp _v tð Þ1Kv tð Þ ¼ Qu tð Þ (4)

where:

M ¼
J N1 N2

NT
1 I1 0

NT
2 0 I2

2664
3775; Dp ¼

~_u J 0 0
0 2n1X1 0
0 0 2n2X2

264
375;

K ¼
0 0 0

0 X2
1 0

0 0 X2
2

2664
3775; Q ¼

I

0

0

2664
3775

Attitude control design

Attitude control design for the spacecraft is discussed in this
section. Attitude control is one of the most critical aspects of
spacecraft design. Put simply, attitude control is a process by
which a spacecraft determines and manipulates its orientation
relative to other objects or inertial space. The attitude control
requirements are determined by the spacecraft’s mission. For
example, a communication spacecraft must point its antennas
toward Earth, its solar arrays toward the sun and its thermal
radiators away from the sun. The spacecraft is a non-rooted
dynamic system consisting of rigid body and flexible solar
arrays. During attitude maneuver, the vibration of the solar
arrays will have a negative impact on the accuracy of attitude

control. Practically, to reduce or eliminate such influence, the
solar arrays are adjusted to parallel the rotating axis of attitude
maneuver. In this way, the moment of inertia of the solar arrays
relative to the rotating axis would be very great so that the
spacecraft can be viewed as a rigid body. Under this
circumstance, the attitude controller could be designed by rigid-
body dynamic equation, and this design method has great
applications in practical engineering as it is simple and easy to
implement (Zhou et al., 2006; Wie et al., 1989; Christopher,
2011; Reijneveld and Choukroun, 2012; Srinath et al., 2012).
Furthermore, there are two other reasons for the design of
attitude controller using rigid-body dynamics method. One
reason is that the attitude maneuver proceeds slowly so that the
vibration of the solar arrays is relatively small and the negative
impact of the solar arrays could be neglected. For this reason,
the spacecraft can be regarded as a rigid body system. The other
reason is that the attitude controller designed for spacecraft
must be simple and practical. Once the vibration of the solar
arrays is considered in control design, the attitude controller is
bound to becomemore complex, which would not only increase
the cost of the spacecraft but also make the control procedure
unstable because of uncertain factors of the system.
In this paper, the rigid-body dynamics method is applied to

the design of attitude controller, and the effectiveness of this
controller would be testified through numerical simulations.

Attitude kinematics equation
Attitude kinematics equation of spacecraft mainly describes the
relation between angular velocity and attitude angle for the
spacecraft. The attitude kinematics of spacecraft can be
described using Euler rotation angles or attitude quaternion.
The kinematics equation for Euler angles involves nonlinear
and computationally expensive trigonometric functions,
whereas the attitude quaternion-based approach requires less
computing time, gives better accuracy and avoids the
singularity problems inherent in using Euler rotation angles.
Therefore, the quaternion based method is applied to describe
the spacecraft attitude in this paper. The spacecraft attitude is
determined by its quaternion, defined as (Zhou et al., 2006):

q ¼ q0 qT
� �T ¼ q0 q1 q2 q3

� �T 2 R4�1 (5)

where q0 and q�are:

q0 ¼ cos f =2ð Þ; q ¼
q1
q2
q3

24 35 ¼
e1sin f =2ð Þ
e2sin f =2ð Þ
e3sin f =2ð Þ

24 35 2 R3� 1 (6)

where f is the magnitude of the Euler axis rotation; and e1, e2,
and e3 are the direction cosines of the Euler axis relative to a
reference frame.
The kinematics equation of spacecraft described using the

quaternionmay be written as (Zhou et al., 2006):

_q0 ¼ � 1
2
qTx

_q ¼ 1
2
eq1 q0I
� �

x

8>><>>: (7)

where x 2 R3�1 is the angular velocity vector of the spacecraft;
and eq is the skew-symmetric matrix associated with q, and its
definition can be found in equation (2).
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Attitude controller design
The flexibility of the solar arrays is not considered in this
section. It is assumed that Ob-xdydzd is the desired reference
frame of the spacecraft, and the desired attitude of the
spacecraft is expressed in Ob-xdydzd. The desired attitude
quaternion is defined as:

qd ¼ qd0 qT
d

� �T ¼ qd0 qd1 qd2 qd3
� �T 2 R4�1 (8)

where qd ¼ qd1 qd2 qd3
� �T 2 R3�1. The current reference

frame is Ob-xbybzb, and the current attitude quaternion of the
spacecraft is:

qb ¼ qb0 qT
b

� �T ¼ qb0 qb1 qb2 qb3
� �T 2 R4�1 (9)

where qb ¼ qb1 qb2 qb3
� �T 2 R3�1. The error quaternion

from the current attitude quaternion to the desired one can be
expressed as (Srinath et al., 2012):

qe0 ¼ qb0qd0 1 qT
b qd

qe ¼ qd0qb � qb0qd � eqd qb

(
(10)

where eqd 2 R3�3 is the skew-symmetric matrix associated with
qd.
The error angular velocity vector xe is defined as (Srinath

et al., 2012):

xe ¼ xb � Abdxd (11)

where xd 2 R3�1 and xb 2 R3�1 are the desired and current
angular velocity vectors of the spacecraft, respectively; and
Abd 2 R3�3 is the direction cosine matrix from Ob-xdydzd to
Ob-xbybzb, given by:

Abd ¼ q2e0 � qT
e qe

� �
I12qeq

T
e � 2qe0eqe (12)

where eqe 2 R3�3 is the skew-symmetric matrix associated with
qe.
The error kinematics equation of the spacecraft based on the

error quaternionmay be written as (Srinath et al., 2012):

_qe0 ¼ �qT
e xe

2

_qe
¼
eqe 1 qe0I
� �

xe

2

8>>><>>>: (13)

The design of attitude controller is presented below. The goal
of attitude control is to design a controller satisfying the
following expressions:

limqe
t!1

¼ 0; limxe
t!1

¼ 0 (14)

where 0 2 R3�1 is zero vector. From equation (11), one could
have:

xb ¼ xe 1Abdxd (15)

By the derivative of equation (15), one can obtain:

_xb ¼ _xe � exeAbdxd 1Abd _xd (16)

where exe is the skew-symmetric matrix associated withxe.

Omitting the modal vibration equation of the solar arrays in
equation (1), the rigid-body dynamic equation can be written
as (Wie et al., 1989):

J _xb 1 exbJxb ¼ u (17)

Substituting equation (16) into equation (17), one can obtain:

J _xe ¼ u� exbJxb � J Abd _xd � exeAbdxdð Þ (18)

The attitude controller adopted in this paper is written as:

u ¼ �k1qe � k2xe 1 exbJxb 1 J Abd _xd � exeAbdxdð Þ (19)

where k1 > 0 is a positive constant and k2 2 R3�3 is a positive
definite matrix.
Here the Lyapunov method is used to prove that the attitude

controller given by equation (19) can stabilize the attitude of
the spacecraft globally and asymptotically.
Substituting equation (19) into equation (18), we get:

J _xe ¼ �k1qe � k2xe (20)

The Lyapunov function is defined as:

V1 ¼ k1 qT
e qe 1 qe0 � 1ð Þ2

h i
1

1
2
xT

e Jxe (21)

The derivative ofV1 is:

_V 1 ¼ xT
e J _xe 12k1qT

e
_qe 12k1qe0 _qe0 � 2k1 _qe0 (22)

Substituting equation (20) into equation (22) and considering
the equations qT

e
_qe 1 qe0 _qe0 ¼ 0 and _qe0 ¼ ��qTe xe=2 , one can

get:

_V 1 ¼ �xT
e k2xe (23)

As k2 is a positive definite matrix, one can obtain _V 1 � 0.
Based on the LaSalle invariance principle, one could have:

lim
t!11xe ¼ lim

t!11qe ¼ 0 (24)

Thus, the attitude controller given in this paper can guarantee
that the spacecraft attitude converges to the desired attitude.

On-orbit identification technology

In this section, parameter identification technology will be
investigated for the spacecraft. The OKID and ERA will be
used in the parameter identification. Both these methods are
time-domain identification techniques and have successful
applications in practical spacecrafts.

Observer/Kalman filter identification
The OKID is a time-domain identification technique,
proposed by Juang et al (1993) and Juang and Phan (2001). It
was used to analyze the Hubble Space Telescope after its
development. The aim of using the OKID in the parameter
identification is to obtain unit impulse response of the system
based on the input-output data. Then, ERA can be used to
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identify natural frequencies, damping ratio and mode shapes of
the system. The OKID has the following characteristics: for a
linear time-invariant system, unit impulse response of the
system can be obtained using the OKID regardless of the form
of external excitation. In other words, the unit impulse
response of the system can be obtained using the OKID even if
the external excitation of the system is not impulse.
Consequently, it becomes possible that on-orbit parameter
identification is performed using the attitude maneuver data of
the spacecraft. Below, we give detailed calculation format of
OKID.
Writing equation (4) into the state equation form and

considering the output equation of the system, one could have:

_x tð Þ ¼ Asx tð Þ1Bsu tð Þ
y tð Þ ¼ Cx tð Þ1Du tð Þ

(
(25)

where x tð Þ ¼ _v tð Þ
v tð Þ

� �
2 R2n�1 is the state vector of the system;

y 2 Rl�1 is the output vector; l is the number of the system

output; As ¼ �M�1Dp �M�1K
I 0

� �
2 R2n�2n and Bs ¼

M�1Q
0

� �
2 R2n�3; andC 2 Rl�2n and D 2 Rl�3 are the output

and influence matrices, respectively. Here, we discretize
equation (25). The analytical solution of the first equation in
equation (25) is:

x tð Þ ¼ eAs t�t0ð Þx t0ð Þ1
ð t

t0
eAs t�tð ÞBsu tð Þdt ; t � t0 (26)

where x t0ð Þ is the initial value of x tð Þ. Let t ¼ k11ð ÞTs and
t0 ¼ kTs in equation (26), Ts is the data sampling period, we
can obtain the following discrete equation:

x k1 1ð Þ ¼ Ax kð Þ1Bu kð Þ
y kð Þ ¼ Cx kð Þ1Du kð Þ

(
(27)

whereA ¼ eAsTs andB ¼ ð Ð Ts

0 esAs dsÞBs.
From the recursive relations of equation (27), one can obtain

the expression of system output at kTs moment as:

y kð Þ ¼ CAkx 0ð Þ1
Xk�1

t¼0

CAtBu k� t � 1ð Þ1Du kð Þ

¼ CAkx 0ð Þ1
Xk�1

t¼0

Ytu k� t � 1ð Þ1Du kð Þ
(28)

where Yt ¼ CAtB 2 Rl�3 and D are the system Markov
parameters to be identified. If the initial condition of the system
is zero, the system Markov parameters can be determined
directly using equation (28) (Juang et al., 1993). However, for a
practical engineering structure, the zero initial condition
cannot be exactly guaranteed because there are always certain
affecting factors that make the initial condition not exactly be
zero. Errors may occur inevitably when the system Markov
parameters are identified using equation (28) based on the
input-output data of the system. To eliminate the influence of

the initial condition on the identification of system Markov
parameters, we first construct a state observer whose Markov
parameter equation is independent of the initial condition.
Then, by solving this equation based on the input-output data
to get the observer’s parameters and establishing the
relationship of Markov parameters between the observer and
the original system, we finally work out the Markov parameters
of the original system. The detailed process is described below.
Constructing the following state observer (Juang et al.,

1993):

x_ k1 1ð Þ ¼ Ax_ kð Þ1Bu kð Þ � F y kð Þ � y_ kð Þ� �
¼ A1FCð Þx_ kð Þ1 B1FDð Þu kð Þ � Fy kð Þ

y_ kð Þ ¼ Cx_ kð Þ1Du kð Þ

8>><>>:
(29)

where F 2 R2n�l is the weighting matrix of the observer. The
eigenvalues of A1FC are adjusted by the selection of F such
that the state x_ kð Þ 2 R2n�1 of the observer approaches the real
state x kð Þ of the system. The output of the observer at kTs

moment can be written as:

y_ kð Þ ¼ C A1FCð Þkx_ 0ð Þ1
Xk�1

t¼0

Y
_

t uT k� t � 1ð Þ�
yT k� t � 1ð Þ�T 1Du kð Þ (30)

where Y
_

t 2 Rl� l1 3ð Þ and D are the observer Markov
parameters;Y

_

t is expressed as:

Y
_

t ¼ C A1FCð Þt B1FDð Þ � C A1FCð ÞtF
� �

¼ Y
_ ð1Þ
t Y

_ ð2Þ
t

h i
(31)

whereY
_ 1ð Þ
t ¼ C A1FCð Þt B 1FDð Þ andY_

2ð Þ
t ¼ �C A1FCð ÞtF.

By selecting F to make the pole of A1FC on the origin, the
eigenvalue equation ofA1FCwill be l � l ið Þ2n ¼ 0, where l i

is the ith eigenvalue. Then, by using the Hamilton–Cayley
theorem, one can have A1FCð Þ2n ¼ 0. From equations (27)
and (28) and by some derivation, the state error equation can
be written as:

x k11ð Þ � x_ k11ð Þ ¼ A1FCð Þ x kð Þ � x_ kð Þ
� �

(32)

By the recurrence for the state error equation, when k ≥ 2n, one
could have:

x k1 1ð Þ � x_ k1 1ð Þ ¼ A1FCð Þ x kð Þ � x_ kð Þ
� �

¼ A1FCð Þ2 x k� 1ð Þ � x_ k� 1ð Þ
� �
..
.

¼ A1FCð Þ2n x k� 2n1 1ð Þ � x_ k� 2n11ð Þ
� �

¼ 0 (33)

From equation (33), when k ≥ 2n, the state x_ kð Þ of the observer
will converge to the real state x kð Þ, i.e. x kð Þ ¼ x_ kð Þ k � 2nð Þ.
So, from the second equation of equation (29), the output y_ kð Þ
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of the observer will converge to the real output y kð Þ when k ≥
2n, i.e. y kð Þ ¼ y_ kð Þ k � 2nð Þ. From equation (31), we know
that Y

_

t ¼ 0 when t � 2n. Therefore, when k ≥ 2n, equation
(30) can be written as:

y kð Þ ¼
X2n�1

t¼0

Y
_

t uT k� t � 1ð Þ yT k� t � 1ð Þ� �T
1Du kð Þ; k � 2n (34)

Equation (34) holds strictly and is independent of the initial
condition of the system. But equation (30) is subject to the
initial condition. Using the least squares to solve equation (34),
the Markov parameters Y

_

t and D of the observer can be
obtained (Juang et al., 1993). The relationship of Markov
parameters between the original system and the observer is
(Juang et al., 1993; Juang and Phan, 2001):

Yt ¼ CAtB ¼ Y
_ 1ð Þ
t 1

Xt�1

k¼0

Y
_ 2ð Þ
k Yt�k�1 1Y

_ 2ð Þ
t D (35)

Based on the input-output data of the system, the Markov
parameters of the observer can be obtained from equation (34)
and those of the original system can be obtained from equation
(35). The natural frequencies of the system can be determined
by using the ERA given in the following section. From the
above process, it can be observed that the specific value of F is
not needed in the entire calculation forMarkov parameters.

Eigensystem realization algorithm
ERA is a well-established algorithm for parameter identification
in time domain (Juang and Pappa, 1985). It utilizes impulse
response data of the system to seek minimal state-space
realization by the singular value decomposition of the Hankel
block matrix. ERA is established based on the state-space
model, and the state vector consists of displacement and
velocity. So, the signals of displacement and velocity are more
convenient and intuitive for parameter identification (Ha et al.,
2015; Zhuo et al., 2004). However, in the on-orbit identification
tests that have been carried out in space, acceleration sensors are
adopted. Those on-orbit tests indicate that acceleration sensors
can be applied to parameter identification of flexible spacecrafts
with low and dense frequencies. Here, the ERA in acceleration
form is given below (Li, 2007).
When using displacement and velocity as the sensor output

and neglecting the influence matrix in the output equation of
the system, the state-space form of equation (4) may be written
as:

_x tð Þ ¼ Asx tð Þ1Bsu tð Þ
ye tð Þ ¼ Cx tð Þ

(
(36)

where ye tð Þ is the output vector of displacement and velocity. In
a discrete form, equation (36) becomes:

x k11ð Þ ¼ A1x kð Þ1B1u kð Þ
ye k1 1ð Þ ¼ Cx k11ð Þ

(
(37)

whereA1 ¼ eAsTs andB1 ¼ ð Ð Ts

0 esAs dsÞBs.

When acceleration is used as the sensor output, the state-
space equation can be written as:

_x tð Þ ¼ Asx tð Þ1Bsu tð Þ
yea tð Þ ¼ C _x tð Þ

(
(38)

where yea tð Þ is the acceleration output vector. Substituting
equation (26) into equation (38) leads to:

_x tð Þ ¼ As eAs t�t0ð Þx t0ð Þ1
ð t

t0
eAs t�tð ÞBsu tð Þdt

" #
1Bsu tð Þ; t � t0

(39)

Let t ¼ k11ð ÞTs and t0 ¼ kTs in equation (39). Then, we can
obtain the following discrete equation:

_x k11ð Þ ¼ A2x kð Þ1B2u kð Þ1Bsu k11ð Þ
yea k1 1ð Þ ¼ C _x k1 1ð Þ

(
(40)

whereA2 ¼ AseAsTs ¼ AsA1 andB2 ¼ Asð
Ð Ts

0 esAs dsÞBs ¼ AsB1.
Making the z-transforming for equations (37) and equation

(40), one can have:

zX zð Þ ¼ A1X zð Þ1B1U zð Þ (41)

zYea zð Þ ¼ C A2X zð Þ1B2U zð Þ1BszU zð Þð Þ (42)

where z is the factor of z-transform. From equation (41), one
can obtain:

X zð Þ ¼ zI� A1ð Þ�1
B1U zð Þ (43)

Substituting equation (43) into equation (42), equation (42) is
rewritten as follows:

Yea zð Þ ¼ CA2z�2 I� z�1A1

� ��1
B1 1 z�1CB2 1CBs

� 	
U zð Þ

(44)

whereU zð Þ is the system input and Yea zð Þ is the system output,
so the transfer functionHt zð Þ can be written as:

Ht zð Þ ¼ CA2z�2 I� z�1A1

� ��1
B1 1 z�1CB2 1CBs (45)

As:

I� z�1A1

� ��1 ¼
X1
k¼0

z�1A1

� �k ¼X1
k¼0

z�kAk
1 (46)

Thus, equation (45) becomes:

Ht zð Þ ¼ CAsA1z�2
X1
k¼0

z�kAk
1B1 1 z�1CAsB1 1CBs

¼ CAs

X1
k¼0

z�k�2Ak1 1
1 B1 1 z�1B1

 !
1CBs

¼ CAs

X1
k¼2

z�kAk�1
1 B1 1 z�1B1

 !
1CBs

¼ CAs

X1
k¼1

z�kAk�1
1 B1 1CBs

(47)

Furthermore, the transfer function of the system in the form of
z-transform can also be written as:
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Ht zð Þ ¼
X1
k¼0

h kð Þz�k (48)

where h kð Þ 2 Rl�3 is the impulse response matrix of the system.
Comparing equation (47) with equation (48), onemay have:

h 0ð Þ ¼ CBs; h kð Þ ¼ CAsA
k�1
1 B1 (49)

Next, we use the impulse responsematrix to perform parameter
identification. TheHankelmatrix is constructed as:

H k� 1ð Þ ¼
h kð Þ h k1 1ð Þ � � � h k1 b � 1ð Þ

h k1 1ð Þ h k1 2ð Þ � � � h k1 bð Þ
..
. ..

. . .
. ..

.

h k1a� 1ð Þ h k1að Þ � � � h k1a1 b � 2ð Þ

266664
377775 2 Ral�3b

(50)

where a and b are the observable and controllable indices,
respectively. Substituting equation (49) into equation (50), one
can obtain:

H k� 1ð Þ ¼ PsA
k�1
1 Qs (51)

where Ps ¼ CAs CAsA1 � � � CAsA
a�1
1

� �T and Qs ¼
B1 A1B1 � � � Ab�1

1 B1

h i
.

Performing the singular value decomposition of H 0ð Þ, one
can have:

H 0ð Þ ¼ URV
T

(52)

where R 2 R2n�2n is the singular value diagonal matrix,
U 2 Ral�2n is the left singular vector matrix and V 2 R2n�3b is
the right singular vectormatrix.
Based on equation (50), onemay observe that:

h k1 1ð Þ ¼ ET
l H kð ÞE3 (53)

where ET
l ¼ Il 0l � � � 0l

� � 2 Rl�al; ET
3 ¼ I3 03 � � � 03

� �
2 R3�3b ; Il 2 Rl�l and I3 2 R3�3 are both unit matrices; and
0l 2 Rl�l and 03 2 R3�3 are both zero matrices. From
Li (2007), onemay have:

H kð Þ ¼ UR1=2 R�1=2U
T
H 1ð ÞVR�1=2

� 	k
R1=2V

T
(54)

Thus, equation (53) can be written as:

h k1 1ð Þ ¼ ET
l UR1=2 R�1=2U

T
H 1ð ÞVR�1=2

� 	k
R1=2V

T
E3

(55)

Comparing equation (55) with equation (49), onemay derive:

A1 ¼ R�1=2U
T
H 1ð ÞVR�1=2; B1 ¼ R1=2V

T
E3;

CAs ¼ ET
l UR1=2 (56)

Solving the eigenvalues ofA1, one can obtain:

w�1A1w ¼ K; K ¼ diag l 1; l 2; � � � ;l 2n

� �
(57)

whereC is the eigenvector matrix ofA1 and l i (i = 1, 2, . . ., 2n)
is the ith eigenvalue.
Defining the following variable:

fi ¼ ln l i

� �
Ts

; i ¼ 1; 2; � � � ; 2nð Þ (58)

where Ts is the data sampling period. The natural frequency v̂ i

can be obtained as:

v̂ i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re fið Þ½ �2 1 Im fið Þ½ �2

q
; i ¼ 1; 2; � � � ; 2nð Þ (59)

where Re(fi) and Im(fi) are the real part and imaginary part of fi,
respectively.

Numerical simulations

In this section, numerical simulations are carried out to
demonstrate the effectiveness of the attitude controller and the
identification method proposed in this paper. The spacecraft
shown in Figure 1 is used as the object. A flexible plate shown
in Figure 2 is adopted to simulate the solar arrays. The left end
of the plate is fixed while the right is free. The physical
parameters of the plate are listed in Table I. Table II shows the
first ten natural frequencies of the plate.

Model reduction and optimal positions of sensors
As we all know, the solar arrays are flexible continuous
structures and have infinite degree of freedom. The

Figure 2 Solar array with FEM girding

Table II Natural frequency of the solar arrays

Modal order Frequency (Hz) Modal order Frequency (Hz)

1 0.2951 6 11.78
2 1.591 7 13.64
3 2.281 8 18.56
4 5.874 9 19.65
5 6.756 10 22.24

Table I Physical parameters of the solar arrays

Elastic modulus 5� 1011 Pa Poisson’s rate 0.33

Density 250 kg/m3 Moment of inertia Jy 31.194 kg·m2

Mass 3.4125 kg Moment of inertia JX 1.0694 kg·m2
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introduction of flexibility brings up a huge challenge to
dynamic modeling and control of spacecrafts. Flexible
characteristics should be taken into account adequately to
exactly describe the dynamic behavior, which results in that the
order of dynamic model is often very high. But control design
and implementation requires that the order of the system
should be as low as possible. Therefore, model reduction
should be done so as to obtain a low-order model which is
convenient for control design. This low-order model should not
only be able to reflect the dynamic characteristics of the original
system but also be low enough for the control design and
implementation. On the other hand, from the point of dynamic
simulation, model order should not be high to improve computing
efficiency. For spacecraft system, the common methods for
reduction are the inertia complete criterion, modal cost analysis
method and balanced truncation technique. In this paper, the
inertia complete criterion is used for the model reduction of solar
arrays. The inertia complete criterion was proposed by Hughes
(Hughes, 1980). The basic idea of this method is determining the
number of the modes that contribute most to the completeness of
the system. For the solar arrays considered in Figure 2, the
proportion of the first ten modal mass in the total modal mass isP10

k¼1 mk=m ¼ 97:137%, and proportions of the first ten modal
moment of inertia relative to the moment of inertia in x and y
directions are

P10
k¼1 Jxk=Jx ¼ 98:986% and

P10
k¼1 Jyk=Jy ¼

99:704%, respectively. It can be observed that it is enough to
truncate the first ten modes of the solar arrays. So, the parameters
r1 and r2 are both chosen to be ten in the numerical simulation.
In the study of parameter identification of this paper, output

data of the spacecraft should be obtained through sensor
measurement when the spacecraft performs attitudemaneuver. It
is assumed that two acceleration sensors are used for each solar
array, so there are totally four sensors for the spacecraft.
However, installation of sensors on the solar arrays is expensive
and the number of sensors is limited, so it is expected that the
sensors should be installed on the optimal position of the solar
arrays. In our study, the optimal positions of the sensors on the
solar arrays are determined using the particle swarm optimization
(PSO), and the calculation results are shown as the black spots in
Figure 1. Those optimal positions are the same as those for the
engineering test satellite-VI given by Shuichi and Isao (1999).

The calculation process of PSO can be found in studies by
Sylvaine et al. (2001) andChen et al. (2009).

Attitude control simulation
The performance of the attitude controller given in Section 3.2
is verified through numerical simulations. In the spacecraft
maneuver, the spacecraft shown in Figure 1 is required to rotate
around the xb axis from 0 to 45°. The desired trajectories of
angular velocity and acceleration are shown in Figure 3.
Figure 3 indicates that the system begins to rotate with a
uniformly accelerated motion from the zero initial condition.
The angular velocity of the system reaches its maximum at 10 s,
then the system rotates with a uniform motion in the period of
[10 s, 15 s], and finally with a uniformly decelerated motion
and the angular velocity drops to zero at 25 s. The attitude
controller is required to drive the system to the desired position
while the actual angular velocity is close to the desired one as
much as possible. In the simulations, the control gains in
equation (19) are taken as k1 = 4.8 and k2 ¼ 4:8J, where

J ¼
212 10 12
10 320 15
12 15 417

24 35 is the moment of inertia of the system.

The simulation results shown in Figure 4 are the time histories
of attitude angle, angular velocity and control torque in the xb
direction of the spacecraft, where the dotted line is the actual
trajectory and the solid line is the desired one. As the maneuver
process is carried out in the xb direction, the control torques in
the yb and zb directions are very small and the figures are
omitted herein. From Figure 4, it can be observed that the
attitude controller given in this paper can drive the spacecraft to
the desired position.

Parameter identification simulation
The above simulation results indicate that the spacecraft can
effectively converge to the desired trajectory by using the attitude
controller given in this paper. The parameter identification of the
system is performed here by using the attitude maneuver data.
The input of the system is the control torque given in Figure 4(c),
and the output is the measurement signal of the four sensors on
the solar arrays in themaneuver process.
As shown in Figure 3, there are three periods in the attitude

maneuver of the spacecraft, namely, uniformly accelerated

Figure 3 Desired trajectory of the spacecraft
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period (0-10 s), uniform velocity period (10-15 s) and
uniformly decelerated period (15-25 s). The input and output
data in the three periods are independently used for the
parameter identification, and the results are displayed in the
third, fourth and fifth columns of Table III, respectively.
Because the spacecraft shown in Figure 1 is symmetrical,
the natural frequencies of the system corresponding to the
symmetric and anti-symmetric modes are very close. The
theoretical values of natural frequencies are calculated based on
equation (4) and are given in the second column of Table III. It
can be seen from Table III that the identification results are
very close to the theoretical ones, which proves that the on-orbit
parameter identification using attitude maneuver data of the

spacecraft is feasible. The extensive simulations indicate that
the input and output data of the whole period (0-25 s) could
also be used for the parameter identification, and the results are
almost as accurate as those of simulations conducted here.

Conclusion

In this paper, the on-orbit frequency identification of spacecraft by
using attitudemaneuver data of the spacecraft is investigated. The
attitude controller is designed using the rigid-body dynamics
method, and the natural frequencies are identified using AOKID
and ERA. Because the OKID can obtain the unit impulse
response of the system regardless of the form of external

Figure 4 System responses of the spacecraft under control

Table III Identification results of natural frequencies of the spacecraft

Modal order
Natural frequency (Hz)

Theoretical values Identification results (0-10 s) Identification results (10-15 s) Identification results (15-25 s)

1, 2 0.2951, 0.4284 0.3051, 0.4140 0.2897, 0.4628 0.3031, 0.4679
3, 4 1.5909, 1.5961 1.5906, 1.5937 1.5935, 1.5981 1.5931, 1.5948
5, 6 2.2810, 2.3302 2.3017, 2.3106 2.3134, 2.3146 2.3035, 2.3069
7, 8 5.8744, 5.8750 5.8739, 5.8754 5.8744, 5.8752 5.8734, 5.845
9, 10 6.7563, 6.7851 6.7634, 6.7682 6.7684, 6.7695 6.7694, 6.7701

11, 12 11.7821, 11.7822 11.7541, 11.7581 11.7535, 11.7583 11.7561, 11.7587
13, 14 13.6447, 13.6623 13.6044, 13.6073 13.6059, 13.6072 13.6049, 13.6089
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excitation, it provides possibility of performing on-orbit parameter
identification by directly using the attitude maneuver data of the
spacecraft. Simulation results indicate that the attitude controller
given in this paper can drive the spacecraft to the desired position,
and the natural frequencies of the spacecraft can be successfully
identified using the attitudemaneuver data of the spacecraft.
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